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Abstract

Masser and others have constructed sequences of “near miss” abc-
triples, i.e., triples of relatively prime rational integers (a, b, c) that asymp-
totically come close to violating the inequality that appears in the abc
Conjecture. In the present paper, we show various partial generalizations
of Masser’s result to arbitrary number fields.

Contents

1 Introduction 1

2 Estimates for Ideal Counting Functions 6

3 The Case of Imaginary Quadratic Fields 7

4 Near Miss abc-Triples via Powers of Units 12

5 Unit-nondegenerate Number Fields 14

1 Introduction

Masser proved the following theorem ([3]). We refer to Notation 1.2 and
Definition 1.3 concerning the notation and terminology that appears.

Theorem 1.1 (Masser). Let P0, γ ∈ R>0 be (positive real numbers) such

that γ <
1

2
. Then there exists a strict abc-triple (a, b, c) in (the field of rational

numbers) Q whose conductor PQ(a, b, c) satisfies the following conditions:

- PQ(a, b, c) > P0;

- |abc| > PQ(a, b, c)
3 exp

(
(logPQ(a, b, c))

1
2−γ

)
.

In the present paper, we show the existence of an abc-triple in an arbitrary
number field L that satisfies similar (but slightly weaker) inequalities to the
inequalities in Theorem 1.1. The inequalities that we obtain are weaker than
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the inequalities of Theorem 1.1 in the following two respects: the quantity on
the left-hand side of this second inequality will be replaced by the “height” of
the triple, while the quantity on the right-hand side of this second inequality
will be replaced by a quantity of slightly lower order. Moreover, we show, in
the case of a quite substantial class of number fields “L”, that the abc-triple
whose existence is asserted may be chosen to satisfy the condition that it does
not arise (even after possible multiplication by a scalar) from an abc-triple that
is contained in some proper subfield of L.

The strategy applied in Masser’s proof of Theorem 1.1 is to construct an
abc-triple such that the prime numbers dividing a or b are bounded, while c
is divisible by a large power of a fixed prime number; these conditions on the
abc-triple imply that PQ(a, b, c) is relatively small. In the present paper, we give
generalizations of this argument of Masser in two cases, each of which applies
to number fields L more general than Q. One is the case where the rank (as
a finitely generated abelian group) of the group of units O×

L of L is 0, i.e., the
case where L is either the field of rational numbers or an imaginary quadratic
field. In this case, a suitable analogue of the triangle inequality holds. Such
an analogue of the triangle inequality allows us to mimick Masser’s proof and
hence to obtain bounds on the “size” of the abc-triple in terms of PQ(a, b, c) (cf.
Theorem A). The other case is the case where the rank of the group of units O×

L

is positive. In this case, by considering suitable powers of a given non-torsion
element of O×

L , we construct abc-triples that satisfy the desired inequalities (cf.
Theorem B).

Notation 1.2.

(1) For a finite set X, we shall use the notation #X to denote the cardinality
of X.

(2) For an algebraic number field L, we use the notation OL (resp. L×, O×
L ,

µL, rkL, hL) to denote the ring of integers of L (resp. the multiplicative
group of L, the group of units of L, the group of roots of unity of L, the
rank of the finitely generated abelian group O×

L , the class number of L).

(3) V(L) (resp. Varc(L), Vnon(L)) denotes the set of places (resp. archimedean
places, non-archimedean places) on L. For v ∈ Vnon(L), pv denotes the max-
imal ideal of OL associated to v, and pv denotes the residue characteristic
of v.

(4) NL denotes the absolute norm on L, i.e., for an ideal a ⊂ OL,NL(a) =
#(OL/a), and for an element a ∈ OL, NL(a) = NL(aOL).

(5) For x an element of a topological field isomorphic to R or C, |x| denotes
the usual absolute value, i.e., if x ̸= 0, then x/|x| is a unit with respect to
the topology. If v ∈ V(L)arc, then, for x ∈ L×, ||x||v := |x|[Lv :R], where
Lv denotes the completion of L with respect to v (so Lv

∼= R or Lv
∼= C),

and x is considered as an element of Lv. If v ∈ Vnon(L), then, for x ∈ L×,
||x||v := NL(pv)

−ordv(x), where ordv(x) ∈ Z denotes the unique element ∈ Z
such that the fractional ideal x · p−ordv(x)

v is generated by v-adic units ∈ L.
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Definition 1.3.

(1) Let a, b, c ∈ L\{0}. If a+b+c = 0, then we say that (a, b, c) is an abc-triple.
For a, b, c ∈ L, if a, b, c ∈ OL and aOL+ bOL+ cOL = OL, then we say that
a, b, c are relatively prime. For an abc-triple (a, b, c), if a, b, c are relatively
prime, then we shall say that (a, b, c) is a strict abc-triple. Note that some
authors use the term “abc-triple” to refer to a “strict abc-triple”, as defined
in the present paper.

(2) For an abc-triple (a, b, c), we define the conductor

PL(a, b, c) :=
∏

v∈Vnon(L)
#{||a||v,||b||v,||c||v}≥2

NL(pv).

Note that if (a, b, c) is a strict (a, b, c)-triple, then

PL(a, b, c) =
∏

v∈Vnon(L)
||abc||v<1

NL(pv).

(3) For an abc-triple (a, b, c), we define

HL(a, b, c) :=
∏

v∈V(L)

max{||a||v,||b||v,||c||v}.

and call it the height of (a, b, c) (cf. [4, §2]). Note that if (a, b, c) is a strict
(a, b, c)-triple, then

HL(a, b, c) =
∏

v∈Varc(L)

max{||a||v,||b||v,||c||v}.

The main theorems of the present paper are the following.

Theorem A. Let L be an imaginary quadratic field (which we regard as a sub-
field of Lv

∼= C, where v denotes the unique element of Varc(L)) and P0, γ ∈ R>0

be such that γ <
1

2
. Then there exists a strict abc-triple (a, b, c) in L such that

- PL(a, b, c) > P0;

- |abc|2 > PL(a, b, c)
3 exp

(
(logPL(a, b, c))

1
2−γ

)
.

Theorem B. Let L be a number field, u0 ∈ O×
L \ µL, and P0, δ ∈ R>0 such

that δ < 1. Then there exists a positive integer l such that if we set u := ul
0,

a := −1, b := u, c := 1− u, then the following conditions are satisfied:

- (a, b, c) is a strict abc-triple;

- PL(a, b, c) > P0;
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- HL(a, b, c) > PL(a, b, c)(logPL(a, b, c))
1−δ.

In fact, Theorem A would be somewhat more meaningful if the (a, b, c) in
the statement of Theorem A could be chosen in such a way that the following
condition on (a, b, c) is satsfied:

(∗Q) (a, b, c) does not arise (even after possible multiplication by a scalar)
from an abc-triple that is contained in Q, i.e., b

a is not contained in
Q.

Indeed, it is easy to verify (cf. the argument given below for more details) that
Theorem A in its present form (i.e., in which the condition (∗Q) is not necessarily
satisfied) follows immediately from Masser’s result (i.e., Theorem 1.1), which
yields abc-triples that do not satisfy (∗Q). In a similar vein, we observe that, in
Theorem B, it is of interest to know whether or not u can be chosen so that u
is not contained in any proper subfield of L.

With regard to Theorem A, we remark that the argument given in the present
paper is insufficient from the point of view of guaranteeing that (a, b, c) may
be chosen so that (∗Q) is satisfied. Nevertheless, we included Theorem A in
the present paper in the hope that some relatively minor modification of the
argument given in the present paper may be sufficient to prove a variant of
Theorem A of the desired form (i.e., that asserts that (a, b, c) may be chosen so
that (∗Q) is satisfied).

Theorem A may be deduced from Masser’s result as follows. (This explana-
tion is of course different from the proof of Theorem A given in Section 3.) If L
is an imaginary quadratic field, and (a, b, c) is a strict abc-triple as in Theorem
1.1, i.e.,

- PQ(a, b, c) > P0;

- |abc| > PQ(a, b, c)
3 exp

(
(logPQ(a, b, c))

1
2−γ

)
,

then, since for v ∈ Vnon(L) such that pv|abc, #{||a||v,||b||v,||c||v} ≥ 2 and
NL(pv) ≥ pv, it follows that

PL(a, b, c) ≥ PQ(a, b, c) > P0.

On the other hand, since for any prime number p,

p2 ≥
∏

v∈Vnon(L)
pv|p

N(pv),

it follows that

|abc|2 ≥ PQ(a, b, c)
6 exp

(
2(logPQ(a, b, c))

1
2−γ

)
≥ PQ(a, b, c)

6 exp
(
(logPQ(a, b, c)

2)
1
2−γ

)
≥ PL(a, b, c)

3 exp
(
(logPL(a, b, c))

1
2−γ

)
.
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With regard to Theorem B, we have the following Corollary C, which may
be regarded as a refined version of Theorem B in the sense that it states that
there exist strict abc-triples as in of Theorem B that do not arise by applying
Theorem B to some subfield L′ of the given number field L for which rkL′ < rkL.

Corollary C. Let L be a number field which is neither the field of rational
numbers nor an imaginary quadratic field, and P0, δ ∈ R>0 such that δ < 1.
Then there exists a unit u ∈ O×

L such that if we set a := −1, b := u, c := 1− u,
then the following conditions are satisfied:

- (a, b, c) is an abc-triple;

- PL(a, b, c) > P0;

- HL(a, b, c) > PL(a, b, c)(logPL(a, b, c))
1−δ;

- if L′ ⊂ L is a subfield such that rkL′ < rkL, then u ̸∈ L′.

In particular, if L is unit-nondegenerate (see Definition 1.4 and Proposition
D below), then b

a = −u ̸∈ L′ for any proper subfield L′ ⊊ L.

Definition 1.4. Let L be a number field. If for any proper subfield L′ ⊊ L,
rkL′ < rkL, then we say that L is unit-nondegenerate. Otherwise, we say that
L is unit-degenerate.

Proposition D. Let L be a totally imaginary Galois extension of Q. Then the
following hold:

(i) L is unit-nondegenerate if and only if for each v ∈ Varc(L), the decompo-
sition group of v in Gal(L/Q) is not contained in the center of Gal(L/Q).

(ii) If L is unit-nondegenerate and M is a Galois extension of Q containing
L, then M is also unit-nondegenerate.

Example 1.5. L := Q
(

3
√
2, exp

(
2
3πi
))

⊂ C is a Galois extension of Q with

center-free Galois group (i.e., the symmetric group on 3 letters). Thus, by
Proposition D, any Galois extension of Q containing L is unit-nondegenerate.

In conclusion, for a quite substantial class of number fields L, we can find
abc-triples that do not arise from any proper subfield of L, and that yield coun-
terexamples of the “γ = 0 version” of the abc Conjecture for L.

2 Estimates for Ideal Counting Functions

Let L be a number field.

Definition 2.1. Let x, y ∈ R>0 and a ⊂ OL a non-zero ideal.

(1) If a ̸= OL, then LPN(a) := max{NL(pv) | v ∈ Vnon(L), pv|a}. We define
LPN(OL) := 1. For a ∈ OL, we define LPN(a) := LPN(aOL).
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(2) We define

ΠL(x) := {p ⊂ OL : non-zero prime ideal | NL(p) ≤ x}

and
πL(x) := #ΠL(x).

(3) We define

ΨL(x, y) := #{b ⊊ OL : non-zero ideal | NL(b) ≤ x, LPN(b) ≤ y}.

(4) We define

ΨL(x, y; a) := #{b ⊊ OL : non-zero ideal | NL(b) ≤ x, LPN(b) ≤ y, a+b = OL}.

(5) We define

θL(x) :=
∑

v∈Vnon(L)
NL(pv)≤x

log NL(p).

The following lemma gives an estimate for θ (cf. [2, Satz 190], or, alterna-
tively, [1, §3.2]; [5, Corollary 3.3]; [5, Corollary 3.4]). In the remainder of the
present paper, we use the notation “O(−)” as it is defined in [5, Definition 1.4].

Lemma 2.2. Let x ∈ R≥2. Then the following estimates hold:

(1) There exists a C ∈ R>0 such that

πL(x) =

∫ x

2

dt

log t
+O

(
x exp

(
−C(log x)

1
2

))
.

(2)

πL(x) =
x

log x
+

x

(log x)2
+O

(
x

(log x)3

)
.

(3)

θL(x) = x+O

(
x

(log x)2

)
.

Proof . (1) See [1, §3.2].

(2) This estimate follows from (1) and the same elementary calculation as in
the proof of [5, Corollary 3.3].

(3) This estimate follows from (2) and the same elementary calculation as in
the proof of [5, Corollary 3.4].

2

We also have an estimate for the function Ψ.
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Lemma 2.3. Let x, y, γ ∈ R>0, u ∈ Z≥1, and q1, . . . , qu maximal ideals of OL

such that γ < 1, x ≥ 1, and NL(qi) ≤ y = (log x)γ for i = 1, . . . , u. Write

D :=

u∏
i=1

qi. Then the following estimate holds:

ΨL(x, y;D) = exp

((
1

γ
− 1

)
y +

y

γ log y
+Oγ,u

(
y

(log y)2

))
= exp

((
1

γ
− 1

)
(log x)γ +

(log x)γ

γ2 log log x
+Oγ,u

(
(log x)γ

(log log x)2

))
.

Proof . Similar to the proof of [5, Theorem 3.9]. In the present situation,
however, we observe that the statement of [5, Proposition 3.5] should be replaced
by the following:

Let x ∈ R>1, y ∈ R≥2. Then the following inequality holds:

(log x)πL(y)

πL(y)! ·
∏

p∈ΠL(y)

log NL(p)
≤ ΨL(x, y) + 1

≤ (log x)πL(y)

πL(y)! ·
∏

p∈ΠL(y)

log NL(p)

1 +
∑

p∈ΠL(y)

log NL(p)

log x

πL(y)

.

2

3 The Case of Imaginary Quadratic Fields

In this section, we prove Theorem A. Let L be an imaginary quadratic field.
Let δ ∈ R>0, δ

′ ∈ R>0 be such that

δ < 12, δ′ < 12, 12−δ

(hL+δ)
1
2
> 12− δ′.

Let q be the smallest prime number such that q2 > P0 and q := qOL is a
maximal ideal. (Note that the existence of such a q follows from Chebotarev’s
Density Theorem.) In the following argument, we shall make a suitable choice
of

x0 ∈ R>3

satisfying certain conditions that depend only on L, P0 (e.g., via a dependence

on q), δ, and δ′. Let x be an element of R>x0 . We define y = y(x) := (log x)
1
2 ≥

1 and G = G(x) := 1 + ⌊log x⌋ > log x ≥ 1. (Thus, G ≤ 1 + log x ≤ 2 log x.)
Next, observe that it follows from Lemma 2.3 that by taking x0 to be suit-
ably large (in a way that depends only on L and P0), we may assume that
ΨL(x, y; q)/G > q2. In particular, there exists a unique element I = I(x) ≥ 1

of Z such that 0 <
1

q2
ΨL(x, y; q) ≤ Gq2I < ΨL(x, y; q).
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Lemma 3.1. For any x ∈ R>x0 , there exists a pair (a1, b1) of elements of OL

such that

(1) LPN(a1) ≤ y, LPN(b1) ≤ y,

(2) a1OL + b1OL = OL, a1OL + q = OL, b1OL + q = OL,

(3) |a1|2 ≤ xhL , |b1|2 ≤ xhL ,

(4) |a1|2 ≤ |b1|2 ≤ exp(hL)|a1|2,

(5) b1 − a1 ∈ qI ,

(6) a1 ̸= b1.

Proof . First, we observe that since Gq2I < ΨL(x, y; q), there exist Gq2I + 1
distinct ideals a0, a1, . . . , aGq2I ⊊ OL such that NL(ai) ≤ x, LPN(ai) ≤ y,

and ai + q = OL for i = 0, 1, . . . , Gq2I . Since the hL-th power of every ideal
OL is principal, there exists a generator s′0 (resp. s′1, . . . , s′Gq2I ) of ahL

0 (resp.

ahL
1 , . . . , ahL

Gq2I
). Then since #(OL/q

I) = q2I , it follows from the Box Principle

that there exist distinct elements s0, s1, . . . , sG ∈ {s′0, s′1, . . . , s′Gq2I} ⊂ OL

such that

• LPN(si) ≤ y for i = 0, 1, . . . , G,

• siOL + q = OL for i = 0, 1, . . . , G,

• si − sj ∈ qI for i, j = 0, 1, . . . , G.

By reordering, we may suppose that

1 ≤ NL(s0) ≤ NL(s1) ≤ · · · ≤ NL(sG) ≤ xhL .

If x
hL
log xNL(si) < NL(si+1) for i = 0, 1, . . . , G−1, then since G > log x, it follows

that

xhL ≤ xhLNL(s0) < x
GhL
log x NL(s0) < · · · < x

hL
log xNL(sG−1) < NL(sG) ≤ xhL ,

a contradiction. Thus, there exists an i0 ∈ Z such that 0 ≤ i0 ≤ G− 1, and

NL(si0) ≤ NL(si0+1) ≤ x
hL
log xNL(si0) = exp(hL)NL(si0).

Since the ideals si0OL and si0+1OL are hL-th powers, the ideal si0OL+si0+1OL

is also an hL-th power, hence principal. Thus, there exists a pair (a1, b1) of
elements of OL such that

a1OL + b1OL = OL,

b1
a1

=
si0+1

si0
.

Then since NL(a1) = |a1|2 and NL(b1) = |b1|2, one verifies immediately that
(a1, b1) satisfies the conditions in the statement of Lemma 3.1.

2
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Lemma 3.2. There exists a strict abc-triple (a, b, c) such that

(1)
PL(a, b, c) > P0,

(2)

HL(a, b, c)
3 ≥ NL(abc) = |abc|2 > PL(a, b, c)

3 exp

(
(12− δ′)

(logPL(a, b, c))
1
2

log logPL(a, b, c)

)
.

Proof . It follows from Lemma 3.1 that for any x ∈ R>x0
, there exists a pair

(a1, b1) of elements of OL which satisfies the conditions in the statement of
Lemma 3.1. Let

a := a1, b := −b1, c := −a1 + b1.

It follows from conditions (2) and (6) of Lemma 3.1 that (a, b, c) is a strict abc-
triple. Since I ≥ 1, it follows from condition (5) of Lemma 3.1 that c ∈ q. Since,
moreover, q = qOL is a maximal ideal and q2 > P0, it follows that

PL(a, b, c) ≥ NL(q) = q2 > P0,

i.e., condition (1) of Lemma 3.2 is satisfied.
It remains to show that, for a suitable choice of x0, (a, b, c) satisfies condition

(2) of Lemma 3.2. Since (a, b, c) is a strict abc-triple, it follows from Definition
1.3 (3) that

HL(a, b, c) = max{NL(a), NL(b), NL(c)}
= max{|a|2, |b|2, |c|2},

and hence that HL(a, b, c)
3 ≥ |abc|2. On the other hand, since, by conditions

(1) and (5) of Lemma 3.1, LPN(a) ≤ y, LPN(b) ≤ y, and c ∈ qI , it follows that

PL(a, b, c) =

 ∏
v∈Vnon(L)

pv|ab

NL(pv)


 ∏

v∈Vnon(L)
pv|c

NL(pv)


≤ exp(θL(y)) ·

NL(c)

q2(I−1)

= exp(θL(y)) ·
|c|2

q2(I−1)
.

Thus, it follows from this estimate, together with condition (4) of Lemma 3.1
and the triangle inequality, that

|c|2 ≤
(
1 + exp

(
1
2hL

))2 |a|2 ≤
(
1 + exp

(
1
2hL

))2 |b|2,
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and hence that

|abc|2 ≥ |c|6(
1 + exp

(
1
2hL

))4
≥ q6(I−1)(

1 + exp
(
1
2hL

))4 exp(−θL(y))
3PL(a, b, c)

3.

Next, recall that it follows from the definition of I and G that

q2I ≥ ΨL(x, y; q)

Gq2
≥ ΨL(x, y; q)

2q2 log x
.

Therefore, if we write

C :=
1

8q12
(
1 + exp

(
1
2hL

))4 ,
then it follows that

|abc|2 ≥ C

(
exp(−θL(y))ΨL(x, y; q)PL(a, b, c)

log x

)3

.

Note that C depends only on L and P0. On the other hand, it follows from
Lemma 2.2 (3) and Lemma 2.3 that

exp(−θL(y))ΨL(x, y; q)

log x

= exp

(
−(log x)

1
2 +O

(
(log x)

1
2

(log log x)2

))

· exp

(
(log x)

1
2 +

4(log x)
1
2

log log x
+O

(
(log x)

1
2

(log log x)2

))
· exp(− log log x)

= exp

(
4(log x)

1
2

log log x
+O

(
(log x)

1
2

(log log x)2

))
.

Thus, for a suitable choice of x0, it follows that

|abc|2 > PL(a, b, c)
3 exp

(
(12− δ)

(log x)
1
2

log log x

)
.

Moreover, since for a suitable choice of x0,(
1 + exp

(
1
2hL

))2
exp(θL(y)) ≤ exp

(
2(log x)

1
2

)
≤ xδ,
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it follows that

PL(a, b, c) ≤ exp(θL(y))|c|2

≤
(
1 + exp

(
1
2hL

))2
exp(θL(y))|b|2

≤
(
1 + exp

(
1
2hL

))2
exp(θL(y))x

hL

≤ xhL+δ

and thus
logPL(a, b, c) ≤ (hL + δ) log x.

Next, since we may assume without loss of generality that

logP0 > exp(2),

and the function

R>exp(2) ∋ z 7→ z
1
2

log z ∈ R

is strictly monotone increasing, 12−δ

(hL+δ)
1
2

> 12 − δ′, and PL(a, b, c) > P0, it

follows that, for a suitable choice of x0,

exp

(
(12− δ)

(log x)
1
2

log log x

)

= exp

(
(12− δ)

(hL + δ)
1
2

· log log x+ log(hL + δ)

log log x
· ((hL + δ) log x)

1
2

log((hL + δ) log x)

)

> exp

(
(12− δ′)

((hL + δ) log x)
1
2

log((hL + δ) log x)

)

≥ exp

(
(12− δ′)

(logPL(a, b, c))
1
2

log logPL(a, b, c)

)
.

This completes the proof that condition (2) of Lemma 3.2 is satisfied. 2

Now we prove Theorem A.

Proof . (This proof is similar to [5, Proof of Theorem 2.2].)
First, observe that there exists an M ∈ R>0 that depends only on δ′ and γ

such that, for z ∈ R>M ,
log z
12−δ′ < zγ .

Now we apply Lemma 3.2, where we take “P0” to be max{P0, exp(M)}, to
obtain a strict abc-triple (a, b, c) such that

PL(a, b, c) > P0, logPL(a, b, c) > M
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and

|abc|2 > PL(a, b, c)
3 exp

(
(12− δ′)

(logPL(a, b, c))
1
2

log logPL(a, b, c)

)
.

Then it follows that

log logPL(a, b, c)

12− δ′
< (logPL(a, b, c))

γ
.

Thus, we conclude that

|abc|2 > PL(a, b, c)
3 exp

(
(12− δ′)

(logPL(a, b, c))
1
2

log logPL(a, b, c)

)
> PL(a, b, c)

3 exp
(
(logPL(a, b, c))

1
2−γ

)
2

4 Near Miss abc-Triples via Powers of Units

In this section, we prove Theorem B. Note that it follows from Dirichlet’s
Unit Theorem that O×

L \ µL ̸= ∅ if and only if L is neither the field of rational
numbers nor an imaginary quadratic field. Since we are given u0 ∈ O×

L \ µL,
it thus follows that L is neither the field of rational numbers nor an imaginary
quadratic field.

Now we prove Theorem B.

Proof . Let I be a sufficiently large integer (≥ 2) such that
I − 1

I + 1
> 1 − δ.

Write α =
∏

σ:L↪→C

(1 + |σ(u0)|) (≥ 1), where σ ranges over the embeddings of

L into C. Thus, α depends only on u0. Let q be the smallest prime number
(≥ 2) such that q > P0, NL(q) = q[L:Q] ≥ logα, and qOL is a maximal ideal
of OL. (Note that the existence of such a q follows from Chebotarev’s Density
Theorem.) If we write

l(I) = #((OL/q
I)×) = q[L:Q]·(I−1)(q[L:Q] − 1),

then 0 < l(I) ≤ NL(q)
I = q[L:Q]·I and 1− u

l(I)
0 ∈ qI . Moreover, it holds that

NL(1− u
l(I)
0 ) =

∏
σ:L↪→C

|σ(1− u
l(I)
0 )|

≤
∏

σ:L↪→C

(
1 + |σ(u0)|l(I)

)

≤

( ∏
σ:L↪→C

(1 + |σ(u0)|)

)l(I)

≤ αNL(q)I .
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Write
a := −1, b := u

l(I)
0 , c := 1− u

l(I)
0 .

Then since a, b, c are relatively prime in OL, it follows that

HL(a, b, c) =
∏

v∈Varc(L)

max{||a||v,||b||v,||c||v}

≥
∏

v∈Varc(L)

||c||v

= NL(c)

(cf. Definition 1.3 (3)) and

PL(a, b, c) =
∏

v∈Vnon(L)
pv|c

NL(pv)

≤ NL(c)

NL(q)I−1

≤ NL(c)

(cf. Definition 1.3 (2)). Thus, it follows that

1 ≤ log NL(c) ≤ NL(q)
I logα ≤ NL(q)

I+1
I−1 (I−1),

and hence that

(logNL(c))
1−δ ≤ (logNL(c))

I−1
I+1 ≤ NL(q)

I−1.

Therefore,

PL(a, b, c) ≤
NL(c)

NL(q)I−1

≤ NL(c)

(logNL(c))1−δ

and thus, since PL(a, b, c) ≥ q[L:Q] ≥ 22 ≥ exp(1),

NL(c) ≥ PL(a, b, c)(logNL(c))
1−δ

≥ PL(a, b, c)(logPL(a, b, c))
1−δ.

Hence, we conclude that

HL(a, b, c) ≥ NL(c) ≥ PL(a, b, c)(logPL(a, b, c))
1−δ.

Since PL(a, b, c) ≥ q > P0, this completes the proof of Theorem B. 2

Finally, we prove Corollary C.

Proof . In Theorem B, we take u0 ∈ O×
L so that u0 is not contained in O×

L′

for any subfield L′ of L such that the rkL′ < rkL. (Here, we note that by
elementary Galois theory, there exist only finitely many subfields of L.) Then
the u obtained by applying Theorem B satisfies the conditions in the statement
of Corollary C. 2
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5 Unit-nondegenerate Number Fields

Lemma 5.1. Let L,L′ be number fields such that L′ ⊊ L. Then rkL′ = rkL
if and only if L′ is totally real, and L is a totally imaginary extension of L′ of
degree 2.

Proof . Let r (resp. r′, s, s′) be the number of real places of L (resp. real
places of L′, complex places of L, complex places of L′). By Dirichlet’s unit
theorem, rkL′ = rkL if and only if (#Varc(L′) =) r′ + s′ = r+ s (= #Varc(L)).
Let π : Varc(L) → Varc(L′) be the map induced by restriction.

Suppose that r′ + s′ = r + s. Then since π is surjective, π is also injective.
Thus, for any v ∈ V(L), [Lv : L′

π(v)] = [L : L′] > 1. In particular, every infinite

place of L′ (resp. L) is real (resp. complex), and [L : L′] = 2.
Conversely, if L′ is totally real, and L is a totally imaginary extension of L′

of degree 2, then a similar argument shows that π is bijective, and hence that
rkL′ = rkL. 2

Now we prove Proposition D.

Proof .

(i) Suppose that L is unit-degenerate. Then it follows from Lemma 5.1 that
L is totally complex, and that there exists a totally real subfield L′ of L
such that [L : L′] = 2. Let D be the decomposition group in Gal(L/Q)
of some v ∈ Varc(L). Since #(D ∩ Gal(L/L′)) = 2 = #Gal(L/L′), and
#D ≤ 2, it follows that D = Gal(L/L′). Therefore, for any σ ∈ Gal(L/Q),
σDσ−1 is equal to the decomposition group of vσ in Gal(L/Q), hence, by
a similar argument, also equal to Gal(L/L′). Thus, we conclude that
D = Gal(L/L′) is a normal subgroup of Gal(L/Q), which implies that D
is contained in the center of Gal(L/L′) since #D = 2.

Conversely, suppose that the decomposition group D in Gal(L/Q) of some
v ∈ Varc(L) is contained in the center of Gal(L/Q). Let L′ := LD (i.e.,
the subfield of D-invariants of L). Then since L is a totally imaginary
Galois extension of Q, and D is contained in the center of Gal(L/L′), it
follows from the definition of D that: (a) L′ is a Galois extension of Q;
(b) [L : L′] = 2; (c) the restriction of v to L′ is real. Moreover, (a) and (c)
imply that L′ is totally real. Thus, L is unit-degenerate by Lemma 5.1.

(ii) Suppose that M is unit-degenerate. Then by (i), the decomposition groups
of the infinite places of M in Gal(M/Q) are contained in the center of
Gal(M/Q). Since the decomposition group of an infinite place v of L in
Gal(L/Q) is equal to the images of the decomposition groups in Gal(M/Q)
of the infinite places of M that lie above v and thus contained in the center
of Gal(L/Q), L is unit-degenerate by (i), a contradiction. 2
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